# Minimum steps to reach N from 1 by multiplying each step by 2, 3, 4 or 5

Given an integer **N**, the task is to find the minimum number of steps to reach the number **N** from 1 by multiplying each step by 2, 3, 4 or 5. If it is not possible to reach N, print -1.**Examples:**

Input:N = 10Output:2Explanation:

Initial number = 1

Step 1: Multiply it by 2, Current Number = 2

Step 2: Multiply it by 5, Current Number = 10

Therefore, Minimum 2 steps required to reach 10.Input:N = 13Output:-1Explanation:

There is no way reach 13 using any given operations

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the

Demo Class for First Step to Coding Course,specificallydesigned for students of class 8 to 12.The students will get to learn more about the world of programming in these

free classeswhich will definitely help them in making a wise career choice in the future.

**Approach:** The idea is to use Greedy Alogorithm to choose the operation that should be performed at each step and perform the operations in the reverse manner that is instead of going from 1 to N, find the operations required to reach N to 1. Below is the illustration of the steps:

- Apply the operations below until N is greater than 1.
- Check if N is divisible by 5, Then increase steps by 1 and reduce N to N/5
- Else, check if N is divisible by 4, Then increase steps by 1 and reduce N to N/4
- Else, check if N is divisible by 3, Then increase steps by 1 and reduce N to N/3
- Else, check if N is divisible by 2, Then increase steps by 1, and reduce N to N/2
- If at any step no operation can be applied then there is no possible set of operations to reach N from 1. Therefore, return -1.

Below is the implementation of the above approach:

## C++

`// C++ implementation to find` `// minimum number of steps` `// to reach N from 1` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find a minimum number` `// of steps to reach N from 1` `int` `Minsteps(` `int` `n)` `{` ` ` `int` `ans = 0;` ` ` `// Check until N is greater` ` ` `// than 1 and operations` ` ` `// can be applied` ` ` `while` `(n > 1) {` ` ` `// Condition to choose the` ` ` `// operations greedily` ` ` `if` `(n % 5 == 0) {` ` ` `ans++;` ` ` `n = n / 5;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % 4 == 0) {` ` ` `ans++;` ` ` `n = n / 4;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % 3 == 0) {` ` ` `ans++;` ` ` `n = n / 3;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % 2 == 0) {` ` ` `ans++;` ` ` `n = n / 2;` ` ` `continue` `;` ` ` `}` ` ` `return` `-1;` ` ` `}` ` ` `return` `ans;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 10;` ` ` `cout << Minsteps(n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation to find` `// minimum number of steps` `// to reach N from 1` `import` `java.util.*;` `class` `GFG{` `// Function to find a minimum number` `// of steps to reach N from 1` `static` `int` `Minsteps(` `int` `n)` `{` ` ` `int` `ans = ` `0` `;` ` ` `// Check until N is greater` ` ` `// than 1 and operations` ` ` `// can be applied` ` ` `while` `(n > ` `1` `)` ` ` `{` ` ` ` ` `// Condition to choose the` ` ` `// operations greedily` ` ` `if` `(n % ` `5` `== ` `0` `)` ` ` `{` ` ` `ans++;` ` ` `n = n / ` `5` `;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % ` `4` `== ` `0` `)` ` ` `{` ` ` `ans++;` ` ` `n = n / ` `4` `;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % ` `3` `== ` `0` `)` ` ` `{` ` ` `ans++;` ` ` `n = n / ` `3` `;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % ` `2` `== ` `0` `)` ` ` `{` ` ` `ans++;` ` ` `n = n / ` `2` `;` ` ` `continue` `;` ` ` `}` ` ` `return` `-` `1` `;` ` ` `}` ` ` `return` `ans;` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `n = ` `10` `;` ` ` `System.out.print(Minsteps(n));` `}` `}` `// This code is contributed by Amit Katiyar` |

## Python3

`# Python3 implementation to find` `# minimum number of steps` `# to reach N from 1` `# Function to find a minimum number` `# of steps to reach N from 1` `def` `Minsteps(n):` ` ` `ans ` `=` `0` ` ` `# Check until N is greater` ` ` `# than 1 and operations` ` ` `# can be applied` ` ` `while` `(n > ` `1` `):` ` ` `# Condition to choose the` ` ` `# operations greedily` ` ` `if` `(n ` `%` `5` `=` `=` `0` `):` ` ` `ans ` `=` `ans ` `+` `1` ` ` `n ` `=` `n ` `/` `5` ` ` `continue` ` ` `elif` `(n ` `%` `4` `=` `=` `0` `):` ` ` `ans ` `=` `ans ` `+` `1` ` ` `n ` `=` `n ` `/` `4` ` ` `continue` ` ` `elif` `(n ` `%` `3` `=` `=` `0` `):` ` ` `ans ` `=` `ans ` `+` `1` ` ` `n ` `=` `n ` `/` `3` ` ` `continue` ` ` `elif` `(n ` `%` `2` `=` `=` `0` `):` ` ` `ans ` `=` `ans ` `+` `1` ` ` `n ` `=` `n ` `/` `2` ` ` `continue` ` ` `return` `-` `1` ` ` `return` `ans` `# Driver code` `n ` `=` `10` `print` `(Minsteps(n))` `# This code is contributed by Pratik` |

## C#

`// C# implementation to find` `// minimum number of steps` `// to reach N from 1` `using` `System;` `class` `GFG{` `// Function to find a minimum number` `// of steps to reach N from 1` `static` `int` `Minsteps(` `int` `n)` `{` ` ` `int` `ans = 0;` ` ` `// Check until N is greater` ` ` `// than 1 and operations` ` ` `// can be applied` ` ` `while` `(n > 1)` ` ` `{` ` ` ` ` `// Condition to choose the` ` ` `// operations greedily` ` ` `if` `(n % 5 == 0)` ` ` `{` ` ` `ans++;` ` ` `n = n / 5;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % 4 == 0)` ` ` `{` ` ` `ans++;` ` ` `n = n / 4;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % 3 == 0)` ` ` `{` ` ` `ans++;` ` ` `n = n / 3;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % 2 == 0)` ` ` `{` ` ` `ans++;` ` ` `n = n / 2;` ` ` `continue` `;` ` ` `}` ` ` `return` `-1;` ` ` `}` ` ` `return` `ans;` `}` `// Driver code` `public` `static` `void` `Main()` `{` ` ` `int` `n = 10;` ` ` `Console.Write(Minsteps(n));` `}` `}` `// This code is contributed by rutvik_56` |

## Javascript

`<script>` `// Javascript implementation to find` `// minimum number of steps` `// to reach N from 1` `// Function to find a minimum number` `// of steps to reach N from 1` `function` `Minsteps(n)` `{` ` ` `var` `ans = 0;` ` ` ` ` `// Check until N is greater` ` ` `// than 1 and operations` ` ` `// can be applied` ` ` `while` `(n > 1)` ` ` `{` ` ` ` ` `// Condition to choose the` ` ` `// operations greedily` ` ` `if` `(n % 5 == 0)` ` ` `{` ` ` `ans++;` ` ` `n = n / 5;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % 4 == 0)` ` ` `{` ` ` `ans++;` ` ` `n = n / 4;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % 3 == 0)` ` ` `{` ` ` `ans++;` ` ` `n = n / 3;` ` ` `continue` `;` ` ` `}` ` ` `else` `if` `(n % 2 == 0)` ` ` `{` ` ` `ans++;` ` ` `n = n / 2;` ` ` `continue` `;` ` ` `}` ` ` `return` `-1;` ` ` `}` ` ` `return` `ans;` `}` `// Driver code` `var` `n = 10;` `// Function Call` `document.write(Minsteps(n));` `// This code is contributed by Khushboogoyal499` ` ` `</script>` |

**Output:**

2

Time Complexity: O(log n)

Auxiliary Space: O(1)